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ABSTRACT 
One part of water quality, Total Suspended Solids (TSS), is a reliable indicator of other pollutants, particularly  

nutrients and metals that carried on the surfaces of sediment in suspension. The measurement of TSS (APHA, 1995) 

is time consuming, and much research has been done to correlate secondary parameters to TSS, but the process of 

turbidity measurement is simpler and faster than the process of TSS measurement. The correlation between TSS and 

turbidity established to provide more efficiency in predicting total suspended solids concentration in dam reservoir. A 

positive correlation between total suspended solids concentration and turbidity level, suggested measurement of 

turbidity possibly, is the most profitable option for estimating total suspended solids concentration in dam reservoir. A 

random study was conducted from Jan 2002 to July 2003 in Dez dam reservoir. Dez dam reservoir in Iran is facing a 

serious sedimentation problem and its dead volume will be quite full in the coming 10 years, and now the inflow 

water in hydropower conduit system is becoming turbid. These results strongly suggest that, turbidity is an      

appropriate monitoring parameter where TSS must be evaluated and the measurement of turbidity levels has the 

potential to replace the measurement of TSS concentrations.  
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1.  INTRODUCTION 

The turbidity unites reported in Nephelometric 
Turbidity Units (NTU), which is a measure-
ment of the intensity of light being scattered 
when light is transmitted through a water 
sample. Turbidity is affected by more than just 
particle concentration. Water color due to 
dissolved solids (Malcolm, 1985) and temper-
ature, as well as the shape, size and mineral 
composition of particles (Clifford et al., 1995; 
Gippel, 1988) can significantly affect a    
turbidity reading. In addition, comparison of 
turbidity readings between studies is     
confounded by a lack of a universal method of 
turbidity instrumentation. 

The measurement of TSS (APHA, 1995) is 
time consuming, and much research has been 
done to correlate secondary parameters to TSS, 
such as discharge (Webb and Walling, 1992; 
Williams, 1989), turbidity (Gippel, 1995; Sidle 
and Campbell, 1985), and water density (FISP, 
1982).  

Each surrogate has limitations in statistical 
certainty, predictive power, and logistical  
coordination. As one of the least expensive and 
easiest measuring methods, turbidity has been 
utilized extensively in various environments 
including streams (Gippel, 1989), lakes 
(Halfman and Scholz, 1993; Paul et al., 1982), 
wetlands (Mitsch and Reeder, 1992), and tidal 
salt marshes (Suk et al., 1998). As a meas-
urement  of  the  attenuation  or  scattering  of  a  
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light beam by suspended solids (particulate and 
dissolved) in the water column, turbidity has 
the potential to provide the most direct   
measure of particulate concentration. 

 

2.  MATERIAL AND METHOD  

2.1  Material 

This study carried out at the Dez reservoir 
which is located in south of Iran. The Dez dam 
(Persian: �����  ) is a large hydroelectric dam in 
Iran, which was completed in 1963 by an  
Italian consortium. At the time of construction, 
the Dez dam was Iran’s biggest development 
project. Dez is 203 m high double curvature 
arch dam, and the crest of Dez dam is 352 m 
above sea level. The original reservoir volume 
was 3315 million m3, and the volume of arrival 
sediment was estimated at 840 million cubic 
meters (MCM) for a 50 years period. The 
minimum and maximum water levels of the 
reservoir operation are 300 m and 352 m from 
sea level respectively. Although the project has  

 

been well-preserved, the project is now more 
than 40 years old and reaching its midlife  
period. The useful life of Dez reservoir is 
threatened by a sediment delta, which is   
approaching the dam’s intake tunnels. The 
hydrographic working in 2002 showed that 
sedimentation reduced useful storage of the 
reservoir of the Dez dam from 3315.6 MCM to 
2700 MCM (19% reduction). Difference  
between levels of the inlet of turbine and bed 
surface of deposited sediment is 14 m with the 
rate of 2 m/year. Therefore, sediment    
management in the Dez reservoir is essential 
and of considerable importance.  

A field measurement program for the 
measurement of the turbidity current in the Dez 
reservoir commenced in December, 2002 and 
finished in June 2003 (Dezab and Acres, 2004). 
The measurements were taken daily. The   
program consisted of a series of measurements 
at various depths and locations across seven 
cross-sections. The station locations are shown 
on Fig. 1 and measurements and equipment are 
shown on Tables 1 to 3. 

 

Table 1  Measurements at various depths and locations across seven cross-sections 

Measurement Equipment 

Depth(from water pressure) RCM9 

Temperature RCM9 

Turbidity RCM9 

Velocity Vale port current 

Suspended sediment sample Vertical tube sampler 

 
Table 2  Valeport 108 MK II specifications 

Property Type Range Resolution 

Speed - 0.03-5 m/s - 

Direction Flux Gate 0-360° 0.25° 

Temperature Thermistor -5-35°C 0.002°C 

Electrical conductivity - 0.1-60 ms/cm 0.001 ms/cm 

Pressure Strain Gauge 100,200,500,1000 0.005% FS 
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Table 3  RCM9 specifications 

 
The first 4 month data gathering was done 

by Vale port 108 MK II that is capable for 
measuring current velocity and direction, 
electrical conductivity, temperature and 
pressure and calculates salinity, density and 
speed of sound. Data gathering is direct 
reading. After the 4th month, a RCM9     

instrument  was  used  to  collect  data.  In  

addition to the previously mentioned    
parameters, it can measure water turbidity. 
Also it is self-recording equipment. 

Figs. 2 to 5 and Table 4 show a sample of 
field measurement records on turbidity  
current in 0.2, 0.6 and 0.8 of maximum depth 
at A2, B3, C3, E and F stations which were 
collected in 24 April, 2003.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1  Measurement Stations 
 

Property Type Range Resolution 

Speed Doppler Current Sensor 3920 0-300 cm/S 0.3 cm/S 

Direction Magnetic compass. Hall effect type 0-360° 0.35° 

Temperature Thermistor (Fenwall B32JM19) -0.64-32.78°C 0.1% of range 

Electrical conductivity Inductive Cell 0-74 ms/cm 0.1% of range 

Pressure Sillicon piezoresistive bridge 0-3500 kPa 0.1% of range 

Turbidity Optical Back-Scatter Sensor 0-1000 NTU 0.1% of flill scale 
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TSS measurement was done according to 
American society for testing and materials 
(ASTM) - D5907 method. TSS range which 
is measurable by this method is between 
4-2000 mg/L. To identify water TSS   
concentration, water sampling was done in 
different depths at each station. Water  
sampling equipment is shown in Fig. 6. 

Table 5 shows the ranges and value of 

different parameters include current     
velocity, direction, electrical conductivity, 
temperature, pH, dimensionless water depth, 
turbidity and concentration used in this 
study. The median particle of all samples 
was less than 0.01 mm, with sediments taken 
upstream in the reservoir slightly larger than 
those closer to the dam. 

 
Table 4  Sample of field measurement records in 24 April, 2003 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2  Temperature(°C)-Dimensionless water depth (z/H) profiles at A2, B3, C3, E and F 
 
 
 

Item Value 
Date 24 April, 2003 
Water level (m) 351 
Maximum depth (m) 94 
Reservoir inflow(m3/s) 590.8 
Reservoir inflow(m3/s) 1210.6 
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Figure 3  Current speed (cm/S)-Dimensionless water depth (z/H) profiles at A2, B3, C3, E and 
F 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4  Current speed (Degree)-Dimensionless water depth (z/H) profiles at A2, B3, C3, E 
and F 
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Figure 5  Turbidity (NTU)- Dimensionless water depth (z/H) profiles atA2, B3, C3, E and F 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6  Water sampling equipment for TSS measurement 
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Table 5  Current velocity, direction, electrical conductivity, temperature, pH, dimensionless 
water depth, turbidity and concentration at A2, B3, C3, E and F stations  

Sample 
data 

Sample 
ID 

Dimensionless 
water depth 

EC 
(mho/cm) 

Temp. 
(°C) 

Vel. 
(cm/s) 

Direction 
(Degree) 

Turbidity 
(NTU) 

Conc.  
(gr/L) pH 

15-Mar. 

-2003 
A2 0.91 210.00 13.22 3.52 100.21 34.93 0.28 - 

17-Mar. 

-2003 
A2 0.93 195.00 13.14 2.05 178.96 18.78 0.15 - 

22-Mar. 

-2003 
A2 0.94 204.00 13.33 2.05 258.78 17.45 0.10 7.72 

23-Mar. 

-2003 
A2 0.91 198.00 13.17 4.40 345.97 17.89 0.15 - 

27-Mar. 

-2003 
A2 0.85 171.00 13.24 57.19 178.61 614.66 6.83 7.88 

28-Mar. 

-2003 
A2 0.89 132.00 13.05 44.00 172.99 850.00 8.66 - 

29-Mar. 

-2003 
A2 0.95 126.00 13.30 5.87 174.39 136.40 1.18 - 

30-Mar. 

-2003 
A2 0.93 126.00 13.00 3.23 167.71 12.73 0.08 - 

2-Apr. 

-2003 
A2 0.97 108.00 13.52 1.17 93.53 221.55 1.91 - 

6-Apr. 

-2003 
A2 0.73 174.00 13.26 1.17 287.61 41.14 0.52 - 

13-Apr. 

-2003 
A2 0.85 159.00 13.24 7.33 260.18 36.45 0.44 - 

15-Apr. 

-2003 
A2 0.78 204.00 13.40 10.10 136.00 26.00 0.19 - 

16-Apr. 

-2003 
A2 0.84 183.00 13.46 11.15 40.79 27.06 0.29 - 

23-Apr. 

-2003 
A2 0.86 - 13.85 97.67 181.43 44.34 0.34 7.89 

24-Apr. 

-2003 
A2 0.79 - 13.50 37.25 170.88 580.84 5.05 - 

25-Apr. 

-2003 
A2 0.88 - 13.55 12.50 160.00 38.00 0.43 - 

Note: EC= Electrical Conductivity; Temp. = Temperature; Vel. = Velocity; Conc. = Concentration. 
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Table 5  Current velocity, direction, electrical conductivity, temperature, pH, dimensionless 
water depth, turbidity and concentration at A2, B3, C3, E and F stations (continued) 

Sample 
data 

Sample 
ID 

Dimensionless 
water depth 

EC 
(mho/cm) 

Temp. 
(°C) 

Vel. 
(cm/s) 

Direction 
(Degree) 

Turbidity 
(NTU) 

Conc.  
(gr/L) pH 

15-Mar. 

-2003 
D 0.84 220.00 13.39 4.40 171.93 35.94 0.24 - 

17-Mar. 

-2003 
D 0.90 248.00 13.43 0.59 109.35 14.85 0.09 - 

22-Mar. 

-2003 
D 0.88 210.00 13.17 1.76 117.43 20.57 0.12 7.21 

23-Mar. 

-2003 
D 0.90 202.00 13.19 0.29 194.08 729.58 6.68 - 

24-Mar. 

-2003 
D 0.81 216.00 13.21 2.64 299.92 47.62 0.37 - 

27-Mar. 

-2003 
D 0.89 228.00 13.24 6.45 113.22 11.89 0.08 8.05 

28-Mar. 

-2003 
D 0.83 117.00 13.14 3.52 39.73 840.57 6.92 - 

29-Mar. 

-2003 
D 0.91 129.00 13.04 4.11 163.14 165.23 1.35 - 

30-Mar. 

-2003 
D 0.93 123.00 13.04 9.97 354.41 42.20 0.39 - 

2-Apr. 

-2003 
D 0.82 132.00 13.07 1.76 305.89 6.23 0.05 - 

13-Apr. 

-2003 
D 0.97 137.00 13.11 3.52 127.98 102.73 1.02 - 

25-Apr. 

-2003 
D 0.84 - 13.92 13.49 334.02 859.24 6.81 - 

30-Mar. 

-2003 
E 0.77 108.00 13.08 1.17 303.08 11.89 0.09 - 

2-Apr. 

-2003 
E 0.96 141.00 13.07 5.87 105.48 13.57 0.21 - 

16-Apr. 

-2003 
E 0.96 168.00 13.42 3.52 168.42 9.83 0.08 - 

23-Apr. 

-2003 
E 0.90 - 14.68 3.23 251.04 1208.61 10.53 7.74 

24-Apr. 

-2003 
E 0.97 - 14.16 5.87 207.44 216.26 1.75 - 

25-Apr. 

-2003 
E 0.93 - 14.10 4.30 98.00 26.70 0.45 - 

Note: EC= Electrical Conductivity; Temp. = Temperature; Vel. = Velocity; Conc. = Concentration. 
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2.2  Method 

A decision tree forest (DTF) can be used to 
evaluate the sensitivity of parameters or   
parameter combinations. A DTF is an 
ensemble of single decision trees (SDTs) 
whose  predictions are combined to make the 
overall prediction for the forest (Fig. 7). In 
DTF, a large number of independent trees are 
grown in parallel, and they do not interact until 
after all of them have been built (Kunwar et al., 
2013). Bootstrap resampling method (Efron, 
1979) and aggregating are the basis of bagging 
which is incorporated in DTF.  

Different training sub-sets are drawn at 
random with replacement from the training 
dataset. Separate models are produced and 
used to predict the entire data from aforesaid 
sub-sets. Then various estimated models are 
aggregated by using the mean for regression 
problems or majority voting for classification 
problems. Theoretically in bagging, first a 
bootstrapped sample is constructed as (Erdal 
and Karakurt, 2013): 

D i= (Yi, Xi) 

where Di
* is a bootstrapped sample according 

to the empirical distribution of the pairs Di = 
(Xi, Yi), where (I = 1, 2, . . . ; n). Secondly, the 
bootstrapped predictor is estimated by the 
plug-in principle. 

Cn (x) = hn (Di,....,Dn) (x) 

Where Cn (x) = hn (D1,...,Dn) (x) and hn is the 
nth hypothesis Finally, the bagged predictor is;  
Cn,B (x) = E [Dn (x)] 

Bagging can reduce variance when    
combined with the base learner generation with 
a good performance (Wang et al., 2011).The 
DTFs gaining strength from bagging technique 
use the out of bag data rows for model    
validation. This provides an independent test 
set without requiring a separate data set or 
holding back rows from the tree construction. 
The stochastic element in DTF algorithm 
makes it highly resistant to over-fitting. 

Statistical measures such as the Coefficient 
of variation (CV), the Normalized mean square 
error (NMSE), the Correlation between actual 
and predicted, Root Mean Squared Error 
(RMSE) and Mean Squared Error (MSE) were 
employed for qualitative evaluation of the 
models. 

 

3.  RESULTS 

To find the correlation between turbidity and 
TSS, based on Table 5 firstly relative 
importance of variable on concentration was 
calculated by decision tree forest. Table 6 
shows that turbidity and velocity are most 
important concentrations in Dez dam reservoir. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 7  Conceptual diagram DTF 
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Coefficient of variation (CV) = 0.639728; 
Normalized mean square error (NMSE) = 

0.185080; 
Correlation between actual and predicted 

= 0.915223; 
RMSE (Root Mean Squared Error) = 

1.5828708; 
MSE (Mean Squared Error) = 2.5054801; 

Secondly, polynomial regression model 
between NTU and TSS; and between NTU, 
Current velocity and TSS were calculated, 
respectively. Figs. 8 and 9 and Tables 7 and 
8 show relation among NTU, current    
velocity and TSS at A, D, E stations from 
Dec. 9, 2002 to July 1, 2003. 

 
Table 6  Relative importance of variables on concentration in Dez dam reservoir 

Variable Relative importance of variables 
Turbidity 100 
Current velocity 9.56 
Direction 1.62 
Temperature 1.26 
Sample ID 1.09 
Dimensionless water depth 0.61 
Electrical conductivity 0.59 
pH 0.03 

 

Table 7  Relation between turbidity (NTU) and concentration (gr/L) 

TSS=NTU×0089 
MAE 0.186 
RMSE 0.365 
R2 0.905 

 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 

Figure 8  Relation between turbidity(NTU) and concentration(gr/L) 
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Table 8  Relation between turbidity (NTU), current velocity (cm/s) and concentration (gr/L) 

TSS=NTU×0087+Current velocity×NTU×3.6E-5 

MAE 0.14 

RMSE 0.237 

R2 0.91 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9  Relation among turbidity (NTU), current velocity (cm/s) and concentration (gr/L) 
 

Figs. 8 and 9 show the data fit tightly around 
the regression model and model provides   
precise prediction capability. Regression 
analysis performed on turbidity and TSS data 
resulted in a strong positive correlation with a 
R2 of 0.91. The graphs show that an increase in 
concentrations affecting in an increase in  
turbidity levels. The higher TSS for a given 
turbidity may be explained by higher      
concentrations of fine particulate organic 
matter in streams and higher concentration of 
suspended fines in reservoir. Therefore,     
turbidity could provide a reliable estimate of 
the concentration of TSS in a water sample 
even though turbidity is not a direct measure of 
suspended particles in water. 

 

CONCLUSIONS 

From field measurement, we can compare the 
correlation between turbidity and total    
suspended solids at different points of the   
reservoir. The turbidity current was the 
strongest at the upstream section A and     
reduced its speed as it progressed downstream 
probably due to a flattening of slope. A linear 
model showed strong positive correlation   
between TSS and turbidity (R2 = 0.91) with a 
regression equation of TTS = 0.0089 × (NTU). 
The utility of these models will be in predicting 
TSS from continuously measured turbidity in 
Dez dam reservoir. These results recommend 
turbidity is a suitable monitoring parameter, 
where water-quality conditions must be  
evaluated, when logistical and/or financial 
constraints make an intensive program of TSS 
sampling impractical.  
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